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Frequentist (Deduction) v Bayesian (Inference)
Data Analysis

* Frequentists & Bayesians use different theorems of
Probability Theory
* The following statements are generalizations, and subject
to limitations thereof
* Frequentist analysis relies on the Law of Large Numbers
— As an experiment is performed an increasing number of times,
— the average outcome approaches the Expected Value
— Inalong run of throwing a 6 sided die, the mean approaches 3.5
* Bayesian analysis relies on Bayes Theorem
— Asingle experiment results in data and in IH a small data set
— Parameters and their uncertainty can be estimated
— Earlier data can be used to inform interpretation of new data
— Data can be used to select the best of alternative models
James C. Rock, Yuma Pacific Meeting, 23-25
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Bayesian Inference for Typically Small
IH data sets

* InIH we believe our data and it is often sparse.

* Bayesian Inference IS the choice for estimating PDF
Parameter Values.

* Bayes Rule allows us to combine prior data with new
data to determine:
— does our new data show a change in the workplace?
— do we need to collect additional data to make a decision?

Analysis | Data Set Data Parameters Central Region Meaning
Frequentist Large  Uncertain Known Confidence Interval p-Value usually Prob[ data do not fit Parameter ]
Bayesian SmEl Known Uncertain Credible Region CRgives Prob [ unknown parameter value isin CR]

Large
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Likelihood v. Probability —
based on Fisher (1920s - 60s)

* First, an example of likelihood and probability while we defer
definitions of those terms.
e Forward Problem: Use probability (0 < P < 1), a function of the
outcome, given fixed parameter values.
— Given 100 flips of a fair coin, find the probability that it landed heads-
up 51 times.
— The discrete Binomial Distribution is the solution to this problem in
terms experimental design parameters, {n, p}.
— Itis useful to Casinos and Insurance Actuarial Problems.
* Inverse Problem: Use likelihood ( 0 < LH ), a function of parameters,
given a fixed outcome.
— Given 100 flips of a coin which landed heads-up 87 times, find the
likelihood that the coin is fair.
— The continuous Beta distribution gives the shape of this likelihood
function in terms of outcome data {n, s}.
— A function of a Maximum Likelihood Estimate (MLE) is its MLE value
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Frequentist v Bayesian Analysis
of the Compliance Problem

number of successess — 1 o
number of failuresn-s — 3 s

frequentist deduction Bayesian inference
L Pt L1 o (1 —pyTe
pdffsip.n]: ————— pdfipis.n]: ——=—
_p=0857,n=21, sye=18 _ 5= 18, n=21; pme = 0.857
h=] [ z
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s is the number of successes p is the probability of success

ONLINE < http : // demonstrations.wolfram.com/FrequentistVersusBayesianPDFForBinaryDecisionsLikeCoinTossin/ >
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Bayesian Introduction:
Posterior LH = Prior LH * Data LH

Bayes rule is one theorem in Probability Theory, equal weight with all others

It is simple to write, but often requires challenging computations

Bayes Rule has been deprecated by academics for 25 decades

It has been used to solve real world problems throughout its lifetime

In WWII, Allies used it to break multiple versions of the German Enigma Code

It found Nuclear Weapons sunk off coast of Palomaris Spain after a B-52 collision
It found a Soviet submarine lost in the central Pacific

It finds/counts spectral peaks in noisy spectra; for trace analysis and astronomy
IH Bayesian Decision Analysis (BDA) portrays IH data to non-IH executives

James C. Rock, Yuma Pacific Meeting, 23-25
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Desirable Properties of a Probability Theory

Probability Measures are represented by real numbers.

— For more detail, see Phil Gregory, Bayesian Logical Data analysis for the Physical
Sciences, p30

Probability Measures must have qualitative agreement with rational intuition.

— Probability must increase as evidence supporting the truth of a proposition
accumulates

— When the deductive limit is reached, Probability Theory must exhibit formal logic’s
syllogism
Probability Measures must be consistent - same info always gives same value.
— Structural - every possible path to a conclusion must produce the same probability
measure
— Propriety - all available evidence must be used while estimating every probability
measure
— Jaynes Equivalence - Equivalent information must produce the same probability
measure for all analysts
— Example: If (A&&B)|C=B|C, thenp[(A&&B)|C]=p[B]|C]
These three lead uniquely to the axioms of Probability Theory

James C. Rock, Yuma Pacific Meeting, 23-25
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Uniqgue Theorems from Those Three
Desirable Properties

* 0<p<1; Impossible Event for p=0; Certainforp=1

* In Bayesian Inference, All Probabilities are conditional

* p[A | B]=probability A is True GIVEN that B is True

e Sum Rule (with NOT =)

* p[A[C]+p[*A|C]=1

* Product Rule

* p[AB|C]=p[A|B,C] p[A|C]=p[B|A,C]p[B]|C]

* BayesRule

. p[le,C]p[A|C]=p[B|A,C]p[B|C];ﬁomtherdud
Rule

. Ihf[A|B,C]=p[B|A,C] p[B|C]; O<Ih

* Marginal Rule, to eliminate the effect of a nuisance parameter x

plalC 1= [ pla xIC]dx

James C. Rock, Yuma Pacific Meeting, 23-25
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Beta Distribution lllustrates PDF and CDF

Probability & Cumulative Distribution Functions (PDF = f[x], CDF = F[x])

PrgProb[ a< x< b] = _L;bfl x] d x = F[b] - F[a]; where F[a] = Lc: f[x] dx b|||ty is h|gh or low
— A PDF has unit area (unit volume for multidimensional PDFs)

Cumulative Distribution Function (CDF) gives probability x < X

p[ (0.1 <x< 0.4) | (f[x] = /fd‘ist[Z, 4]) ] = 0.582

—
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Review - LogNormal Distribution for Normalized Concentration

A single parameter, for the normalized exposure, may be misleading

For example, Maximum Likelihood Estimate (MLE) < Action Level
— MODE = MLE

Note: CONCMLE < 0.4 OEL, Mean Conc > 1.13 OEL, P[CONC > OEL] > 0.39
LN PDF

0.8 Mode = 0.3998 forgm =0.8,gs = 2.3

0.6- Median = 0.8

0.4¢ Mean = 1.1317

prob[ conc > OEL | gm, gs |

0.2¢ =0.394
X Conc
1 2 3 4 5 OEL
James C. Rock, Yuma Pacific Meeting, 23-25
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A Positively Skewed PDF has Mode < Median < Mean

LogNormalDistribution , gm =0.5, gs = 1.9, mo =0.331, md = 0.5, mn = 0.614

20
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\gm:md

mn
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Confidence Interval (frequentist) v Credible Region (Bayesian)

Frequentist Cl surrounds the mean with equal area in its tails
— Some probabilities in tails exceed some probabilities in Cl
— Two tails have equal areas, sometimes called a/2, and Confidence Level (CL) is called 1-

a.

Bayesian CR surrounds the mode and may have unequal area in its tails
— All probabilities in tails are smaller than any probability in the CR
— Two tails may have unequal areas whose sum is often called a for (1-a) CL.

The next slide lllustrates Cl & Mean v CR & Mode
— Examine the PDF, its mean and mode by clicking the first button (black)
— Examine the Cl and mean by clicking the second button (blue)
— Examine the CR and mode by clicking the third button (red)
— Compare all by clicking the last button (maroon)
— Adjust a and b to change the amount and direction of skew
— Adjust the Confidence Level from 0.25 to 0.975 to see its effect on CI, CR, mean & mode
— Note that for small Confidence Levels, the Mean is outside CR and Mode is outside Cl

James C. Rock, Yuma Pacific Meeting, 23-25 13
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Mean in Cl and Median In CR

a => negative skew :D 4

M
i 1

b => positive skew

p = Confidence Level (55 04 05 055 0.6 065 07[075 0.8 0.85 0.9 0.95 0.975

Display  pDF PDF +CI PDF + CR |PDF +CI + CR

PDF[ pdist] = 9520 (1 -39 % for a=4, b =14, p=0.75

Mean = 0.2222, CI={0.1157, 0.3364} Clwidth = 0.2207
Mode = 0.1875, CR ={0.0960, 0.3106) CRwidth = 0.2146

E
02

oo 0.4 0.6 os 1.0
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Parameter Estimation

e Use Prior Information and New Data to Build
(Joint) Likelihood Function of Model Parameter(s)

— Normalize (Joint) Likelihood Function to the Posterior
(Joint) PDF, which has unit volume

— Marginalize the (Joint) Likelihood Function to obtain
the posterior PDF for each parameter

— The Mode of a posterior PDF is the Maximum
Likelihood Estimate for that parameter

— NOTE: Any function of MLE parameter values returns
the MLE value for that function

James C. Rock, Yuma Pacific Meeting, 23-25
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Model Selection

e Compute the (Joint) Bayesian Likelihood of each
model, by multiplying PDF(s) for each data &
parameter value
— The model with the highest likelihood is the best of

those tested
— Bayesian model selection mechanizes Ockham’s Razor

— Bayesian Model Selection favors simple over complex
models AND tight over loose fitting models

— Bayesian model selection weights both simplicity and
goodness of fit when choosing “best” model

James C. Rock, Yuma Pacific Meeting, 23-25
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Intuitive Likelihood for Model Selection

» Data are represented by small black discs.

Is Red or Blue Model the likely source of the 4 data points ?

0.30F
0.25¢
0.20¢
0.15¢
0.10},
0.05¢

12
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Likelihood (LH), and Likelihood Function (LHF)
are both products of probabilities

For a data set, d = {d1, d2, ..., dn}
and a LogNormalPDF =f [ gm, gs | x]

The product is LH when gm & gs are numbers,
LH[d]=f[d1]*f[d2]*..*f[dn]

The product is a LHF when gm & gs are variables

LHF[gm,gs | d ] =f[gm, gs | d1] * f[gm, gs | d2] * ... *
flgm, gs | dn]

James C. Rock, Yuma Pacific Meeting, 23-25
Jan 2013
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Likelihoods in Practice

e A Likelihood (LH) is the product of the
probabilities of independent random variables
e Here are 3 probabilities. Their product equals
their likelihood.
prob ={0.2, 0.5, 0.3}
lh=0.03

* |In general, LH tend to be very small numbers
so that LH << probability

k / 232
2/26/2013 James C. Rock, Yuma faCIfIC Meeting, 23-25 19
Jan 2013

A Likelihood Function ( LHF ) with Algebra

e LHF = product of the PDF[ di ], for independent data {d1, d2, ... dn}
* The Peak of LHF gives the locus of the MLE parameters

_x-m?

df [x] = ==, data = {1.1, 2.9, 3.1, 5
pdr [x] Yo { }
(1.21‘7—;‘)2 e 29—u)2 _8 zlc:zu)2 _ 152—:2)2 22115412, 12 2
_ e o? _ e o2
| hf [u, o] = 4% 2 = 4 ot 2

| hf yax = 0.0009428 at upme = 3.025 and oyg = 1.381
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The LHF and PDF have same shape,
but PDF has unit volume

e The LH is the area (volume) of the LHF
e LH >0, is a positive real number

e The parent PDF has unit area (volume)
e Thus, PDF = LHF /LH

James C. Rock, Yuma Pacific Meeting, 23-25
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Parameter Estimation using
Data Likelihood

¢ The next slide lllustrates the Calculations for the
illustrated PDF Prior using dat7.

* Data shown as Vertical Lines whose lengths are
the relative probabilities from PDF.

e Model Likelihood is the product of line lengths for
independent samples.

* Next two slides illustrate LogNormal and Normal
PDFs with interactive graphics.

* Find Maximum Likelihood by moving sliders to
adjust{gmand gs }or{mands }.

James C. Rock, Yuma Pacific Meeting, 23-25
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MLE Parameter Estimation: LogNormal PDF

gMye & gSyie Define the Maximum Likelihood for dat7 when prior = LogNor PDF

Line heights are proportional to probability for each data value;

LH = product of line heights

Adjust the sliders to see the changes in the line heights with various LogNormal Models
Note that the initial setting shows parameters for the maximum likelihood

gm {0
gs —(F— =15

Likelihood = 0.147, FOR {gm =05, gs=19}
15}

10r

05

05 10 15 20 25 30

James C. Rock, Yuma Pacific Meeting, 23-25
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Parameter Estimation: Normal PDF

* My & Sy Define the Maximum Likelihood for dat7 when prior = Nor PDF

¢ Adjust the sliders to see the change in line heights and in their product,
the Likelihood

¢ Note again that the initial setting shows parameters for the maximum
likelihood

m_ A =0
S }———— o

Likelihood = 0.0249, FOR {m =06, s=04}

10}
o8l /
06}
04
/O{ 7
-05 05 10 15 20 25

J C. Rock, Y Pacific Meeting, 23-25
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¢ |llustration of dat7 LHFs as function of their Parameters

¢ Moving a parameter away from the peak of the Jt LHF
decreases the associated LH

( Likelihood (Peak) Ratio = 5.95 Likelihood (Vol) Ratio = 22.1 h

Both Ratio tests pick LogNormal over Normal for this data:
data = (0.224, 0.27, 0.316, 0.333, 0.679. 1.05, 1.35)

InLHF[gm.gs] nLHF[m,s]

James C. Rock, Yuma Pacific Meeting, 23-25
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Parameter Estimation with Model Selection

e Extend to our Earlier Parameter Estimation with dat7 to
Model Selection

* Consider dat7, a data set with 7 independent values
» dat7={0.224,0.27,0.316, 0.333, 0.679, 1.05, 1.35 }

e Use our Computed Likelihoods for both the Normal and a
LogNormal Models

* Normal Likelihood Function is a function of two
parameters, m and s

e LogNormal Likelihood Function is a function of two
parameters, gm and gs

* The model with the larger Maximum Likelihood is a better
model for dat7

James C. Rock, Yuma Pacific Meeting, 23-25
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Model Selection

e Maximum Likelihood ratio for dat7 favors

— LogNor over Nor by >5.8:1
e InLNx = maximum value for LogNormal prior PDF,
e |hNx = maximum value for Normal prior PDF

IhLNx = 0.147, for {gm =05, gs =19} |1th =0.0249,for {(m=06, s =04}

05 10 15 20 25 30 -—05 ' 05 10 15 20 25

IhiNx _ 0147 _ g gg

IhNx — 00249
2/26/2013 James C. Rock, Yuma Pacific Meeting, 23-25 27
Jan 2013

LHF Ratios replace trial and error
parameter estimates

Frequentists' use LHFpeak, Bayesians' use LHFvolume.

( LHF[ central , width | dt7, dist | LHF Peak LH = LHF Volume Model )
(0.263 exp(—(10.2 log(gm)+7. log? (gm) +6.74 )/(2 Iogz(gs))))/log7(gs) 0.149 0.0834 LogNormal
exp(-(7. m? +3.72 -8.45 m) /(2s%)) /(V2 827 §7) 0.025 0.00378 Normal
Likelihood (Peak ) Ratio = 5.95 =
Likelihood (Vol) Ratio = 22.1 L\Xf‘
L )
2/26/2013 James C. Rock, Yan;: ;;;gic Meeting, 23-25 28
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LogNormal Joint PDF = 222LHE “and it has unit volume

Joint LH ’

P

i
#
Ik
i
el
o

f
Qf

*¢
&

G,

¥
0

With dat7, the PDF is ~ 10x larger than the LHF

~
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Number of Panels Displayed 1| 5 |3
a =Slope = 7=‘ f——-=2%
YIX]=a £x =2.59 4x LH[a] = 0.0005%1 SostLHFmax = 0000891 @3y ¢ = 2.593
N priorPDF[err] = Hor[0,1]
postLHF[z]
14
17 0 0
10
8 )
. .
a
z .
0 1 2 3 4 i3 2 -1 0 12 a3 ' T 0 T
¢ The buttons display the left panel, the left & middle panels, or all three panels
¢ Move the slider to change the slope (left), the errors (middle) and LH (right)
* Theinitial value, a = 2.59, is its maximum likelihood,
— It represents the best fit to the data.
2/26/2013 James C. Rock, Yan;: ;;ii;ic Meeting, 23-25 30
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Probability (p) from PDF
Limit[p]—>0asa—-b

ag——
bgpo—
pl(a < x<b) | (f[x] = gdist[a,b]) ] =0.582
2.0
% 1.5 -,
= prob =0.582
10
s
=) - R -,
L5 < 5
Ll =1
ooli
0.0 0.2 0.4 08 ] 1.0
X

James C. Rock, Yuma Pacific Meeting, 23-25
Jan 2013
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From dat7 Joint PDF to Probability of specific values for { gm, gs }
Maximum Likelihood Parameter Estimates are actually quite UNLIKELY
Cylinder Volume = Probability that {gm,gs} lie in that defined region of dat7

— As the radius is reduced, the probability the model parameters are inside the
cylinder decreases.

— As the sliders move the cylinder around the {gm, gs} plane, the probability
decreases.

— The initial position indicates the maximum likelihood values for gm and gs.

agm 3 cowss
9S —{fF———c103
eyl = o0 003 onsﬂﬂ

Prob[ {gm, gs} ={0.483, 1.93} | {rcy. =0.05, dat7, LN model} | =0.014

OF
e
i

o]
Lid

".

il

Ly
l..-.-

4
17
117

g
7
o

0.0 0.2 64 06 08 10 12
J)
10 s gm
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Illustration of the MARGINAL INTEGRAL

Probability of gm given dat19, by averaging over gs from the Jt PDF

dw = half of slice width 0 | 000s 00075 M
gmw = Nominal Valueof gm —

Shaded Volume = P[ 0.195 < gm < 0.205 | dat19, LogNor ] = 0.0808

-

~

2/26/2013
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Lognormal PDF is a parametric function of gm and gs

Each pair, {gm, gs}, represents a unique LogNormal PDF.

Probability of non-compliance (or “fail”) increases moving away from the origin

-

X = 9095, Green for x < 0.8, Yellow for 0.8 <x < 1.2,

gs=3.6

Lpfawl =0.0262

pfail =0.247

.-

gs=2.7 |  Pfail =000618

if

pfail =0.189

pfail =0.428

pfail =0.407

o
-
I\

i pfail =0.458
i pfail =0.447

pfail =0.639

fail =0.678

il =0.783

e
| S
I S

gs=1.8 pfail =0.0000118 pfail =0.0682 pfail =0.346 I pfail =0.41
gs=1 1 [pfail=381x107%% a)\fal =2.05x10"% pfail =0.00712 ]\pfa =0.0806 ' pfail =1.
K g gm=0.1 gm=0.5 gm=0. 95 gm=1. 05 gm=1.9 )
e k, Y Y 3-2
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Regions in the {gm, gs} plane,
colored for Compliance

* NIOSH in 1977 suggested 95% confidence as a goal for compliance decisions.
e Let X95 = the 95th percentile of the LogNormalDistribution[ gm, gs ]
. X95 = gm gsl.64485
e The contours for x95 = {0.01, 0.1, 0.5, 1} and gs > 4.055 are now easily plotted.
e Avoid Environments with gs >4.055 .OR. x95 > OEL
— They represent dangerous uncontrolled exposures

AIHA BDA Regions — Log Log Plot s AIHA BDA Regions — Linear Plot

oo 0.008.010 0,050,100 0.508.000
gm

James C. Rock, Yuma Pacific Meeting, 23-25
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Overlay contour Plot for dat19PDF onto
AIHA BDA Regions

The volume of the Jt PDF over the gm, gs plane in each region is the probability
Each point, {gm, gs} represents one possible model for the exposures

Each such discrete model has p =0

Probabilities are computed for regions of the {gm, gs} plane

AIHA BDA Regions — Linear Plot
5

James C. Rock, Yuma Pacific Meeting, 23-25
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Decision Regions On PDF

James C. Rock, Yuma Pacific Meeting, 23-25
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Illustration of Volume (P) over Region 3 using the dat19PDF
This is another type of Probability Integral,
It sums over the portion of the PDF that is of interest.

James C. Rock, Yuma Pacific Meeting, 23-25
Jan 2013
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BDA Bar Chart for dat19, which has 2 values > OEL;

* {gm, gs}peax = {0.196, 2.60}, but P[x > Xy | dat19, LN] = 0.676
* No need for p-value, ANOVA, F-test, etc. etc. ... etc.
* Bar height = probability for Regions 0 thru 5

— Given dat19 & LogNormal model

a P[ R# | dat19, LN | )

0.586

0.5

0.4
0.321

0.3

0.2

o 0.0907

113107  0.00233
\_ (RO [R1] [R2 ] (R3] R4 RS

Region

James C. Rock, Yuma Pacific Meeting, 23-25
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Summary

* Probability Theory is useful for both Deduction
(FREQUENTIST) and Inference (BAYESIAN)

* Bayes Rule enables Inference using both prior and new data

* Likelihood (LH) is product of probabilities

 Likelihood function (LHF) is product of probabilities w
unknown parameters

* LH = area (volume) of LHF and PDF = LHF/LH

e BDA defines regions in terms of compliance goals

* Probability that data are in a region = Area (volume) of that
region of PDF

* BDA is a useful communications tool

James C. Rock, Yuma Pacific Meeting, 23-25
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Further Reading

Information Processing: Boolean Algebra, Classical Logic, Cellular Automata, and
Probability Manipulation. by David J. Blower

The Theory That Would Not Die: How Bayes’ Rule Cracked the Enigma Code,
Hunted Down Russian Submarines, and Emerged Triumphant from Two Centuries
of Controversy. by Sharon Bertsch McGrayne

Probability Theory - The Logic of Science. by Edwin T. Jaynes

Data Analysis - A Bayesian tutorial. by D. S. Sivia with J. Skilling

Paul Hewett, Perry Logan, John Mulhausen, Gurumurthy Ramachandran, and
Sudipto Banerjee. “Rating Exposure Control Using Bayesian Decision Analysis.”
Journal of Occupational and Environmental Hygiene, (2006) 3 : 568-581

The Theory That

| Would Not Die
How Bayes’ Rule
Cracked the
Enigma Code,

DATA
ANALYSIS
ABAYESIAN TUTORIAL

David J. Blower

SHARON BERTSCH MCGRAYNE
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