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Frequentist v Bayesian Inference and the 
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Industrial Hygiene Elevator Discussion

• IH - The profession Dedicated to Making Possible 

• the Safe and Healthful Use 

• of Necessary Hazardous Materials in 

• Necessary Hazardous Processes
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Frequentist (Deduction) v Bayesian (Inference) 

Data Analysis

• Frequentists & Bayesians use different theorems of 
Probability Theory

• The following statements are generalizations, and subject 
to limitations thereof

• Frequentist analysis relies on the Law of Large Numbers
– As an experiment is performed an increasing number of times, 

– the average outcome approaches the Expected Value

– In a long run of throwing a 6 sided die, the mean approaches 3.5

• Bayesian analysis relies on Bayes Theorem
– A single experiment results in data and in IH a small data set

– Parameters and their uncertainty can be estimated

– Earlier data can be used to inform interpretation of new data

– Data can be used to select the best of alternative models
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Bayesian Inference for Typically Small 

IH data sets

• In IH we believe our data and it is often sparse.

• Bayesian Inference IS the choice for estimating PDF 

Parameter Values.

• Bayes Rule allows us to combine prior data with new 

data to determine:

– does our new data show a change in the workplace?

– do we need to collect additional data to make a decision?

Analysis Data Set Data Parameters Central Region Meaning

Frequentist Large Uncertain Known Confidence Interval p-Value usually Prob @ data do not fit Parameter D

Bayesian
Small
Large

Known Uncertain Credible Region CR gives Prob @ unknown parameter value is in CR D
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Likelihood v. Probability –

based on Fisher (1920s - 60s)
• First, an example of likelihood and probability while we defer 

definitions of those terms.

• Forward Problem:  Use probability ( 0 ≤ P ≤ 1 ), a function of the 
outcome, given fixed parameter values.

– Given 100 flips of a fair coin, find the probability that it landed heads-
up 51 times.

– The discrete Binomial Distribution is the solution to this problem in 
terms experimental design parameters, {n, p}.

– It is useful to Casinos and Insurance Actuarial Problems.

• Inverse Problem:  Use likelihood ( 0 < LH ), a function of parameters, 
given a fixed outcome.

– Given 100 flips of a coin which landed heads-up 87 times, find the 
likelihood that the coin is fair.

– The continuous Beta distribution gives the shape of this likelihood 
function in terms of outcome data {n, s}.

– A function of a Maximum Likelihood Estimate (MLE) is its MLE value
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Frequentist v Bayesian Analysis 

of the Compliance Problem

ONLINE < http : // demonstrations.wolfram.com/FrequentistVersusBayesianPDFForBinaryDecisionsLikeCoinTossin/ >

number of successes s 18

number of failures n-s 3
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Bayesian Introduction:    

Posterior LH = Prior LH * Data LH 

• Bayes rule is one theorem in Probability Theory, equal weight with all others

• It is simple to write, but often requires challenging computations

• Bayes Rule has been deprecated by academics for 25 decades

• It has been used to solve real world problems throughout its lifetime

• In WWII, Allies used it to break multiple versions of the German Enigma Code

• It found Nuclear Weapons sunk off coast of Palomaris Spain after a B-52 collision

• It found a Soviet submarine lost in the central Pacific

• It finds/counts spectral peaks in noisy spectra; for trace analysis and astronomy

• IH Bayesian Decision Analysis (BDA) portrays IH data to non-IH executives

2/26/2013 7
James C. Rock, Yuma Pacific Meeting, 23-25 

Jan 2013

Desirable Properties of a Probability Theory

• Probability Measures are represented by real numbers.
– For more detail, see Phil Gregory, Bayesian Logical Data analysis for the Physical 

Sciences, p30 

• Probability Measures must have qualitative agreement with rational intuition.
– Probability must increase as evidence supporting the truth of a proposition 

accumulates

– When the deductive limit is reached, Probability Theory must exhibit formal logic’s 
syllogism

• Probability Measures must be consistent - same info always gives same value.
– Structural - every possible path to a conclusion must produce the same probability 

measure

– Propriety - all available evidence must be used while estimating every probability 
measure

– Jaynes Equivalence - Equivalent information must produce the same probability 
measure for all analysts

– Example:  If  (A && B) | C = B | C,  then p[ (A && B) | C ] = p[ B | C ]

• These three lead uniquely to the axioms of Probability Theory
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Unique Theorems from Those Three

Desirable Properties
• 0 ≤ p ≤ 1;  Impossible Event for p = 0;  Certain for p = 1

• In Bayesian Inference, All Probabilities are conditional

• p[ A | B ] = probability A is True GIVEN that B is True

• Sum Rule (with NOT = ~)

• p[ A | C ] + p[~ A | C ] = 1

• Product Rule

• p[ A, B | C ] = p[ A | B , C ]  p[ A | C ] = p[ B | A , C ]  p[ B | C ]

• Bayes Rule

• p[ A | B , C ]  p[ A | C ] = p[ B | A , C ]  p[ B | C ];  from the Product 
Rule

• lh[ A | B , C ]  = p[ B | A , C ]  p[ B | C ];  0 < lh

• Marginal Rule, to eliminate the effect of a nuisance parameter x

p[ a | C  ] =  Ÿ
-¶

¶ p@ a, x C D „ x 
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Beta Distribution Illustrates PDF and CDF
• Probability & Cumulative Distribution Functions (PDF = f[x], CDF = F[x])

• Probability Distribution Function (PDF) - where is probability is high or low

– A PDF has unit area (unit volume for multidimensional PDFs)

• Cumulative Distribution Function (CDF) gives probability x < X

Prob[ a< x< b] = Ÿa
b f @xD „ x = F[b] - F[a];    where F[a] ª Ÿ

-¶

a f @xD „ x 
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Review - LogNormal Distribution for Normalized Concentration

• A single parameter, for the normalized exposure, may be misleading

• For example, Maximum Likelihood Estimate (MLE) < Action Level 

– MODE = MLE

• Note:  CONC MLE < 0.4 OEL,  Mean Conc > 1.13 OEL, P[CONC > OEL] > 0.39
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A Positively Skewed PDF has Mode < Median < Mean

gm 0.5

gs 1.9

0 1 2 3 4 5

0.5

1.0

1.5

2.0
LogNormalDistribution , gm = 0.5, gs = 1.9, mo = 0.331 , md = 0.5, mn = 0.614

mn

gm=md

mo
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Confidence Interval (frequentist) v Credible Region (Bayesian)

• Frequentist CI surrounds the mean with equal area in its tails
– Some probabilities in tails exceed some probabilities in CI

– Two tails have equal areas, sometimes called a/2, and Confidence Level (CL) is called 1-
a.

• Bayesian CR surrounds the mode and may have unequal area in its tails
– All probabilities in tails are smaller than any probability in the CR

– Two tails may have unequal areas whose sum is often called a for (1-a) CL.

• The next slide Illustrates CI & Mean v CR & Mode
– Examine the PDF, its mean and mode by clicking the first button (black)

– Examine the CI and mean by clicking the second button (blue)

– Examine the CR and mode by clicking the third button (red)

– Compare all by clicking the last button (maroon)

– Adjust a and b to change the amount and direction of skew

– Adjust the Confidence Level from 0.25 to 0.975 to see its effect on CI, CR, mean & mode

– Note that for small Confidence Levels, the Mean is outside CR and Mode is outside CI
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Mean in CI and Median In CR
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a î negative skew 4

b î positive skew 14

p î Confidence Level 0.25 0.4 0.5 0.55 0.6 0.65 0.7 0.75 0.8 0.85 0.9 0.95 0.975

Display PDF PDF + CI PDF + CR PDF + CI + CR
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Parameter Estimation

• Use Prior Information and New Data to Build 

(Joint) Likelihood Function of Model Parameter(s) 

– Normalize (Joint) Likelihood Function to the Posterior 

(Joint) PDF, which has unit volume

– Marginalize the (Joint) Likelihood Function to obtain 

the posterior PDF for each parameter

– The Mode of a posterior PDF is the Maximum 

Likelihood Estimate for that parameter

– NOTE:  Any function of MLE parameter values returns 

the MLE value for that function
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Model Selection

• Compute the (Joint) Bayesian Likelihood of each 
model, by multiplying PDF(s) for each data & 
parameter value

– The model with the highest likelihood is the best of 
those tested

– Bayesian model selection mechanizes Ockham’s Razor

– Bayesian Model Selection favors simple over complex 
models AND tight over loose fitting models

– Bayesian model selection weights both simplicity and 
goodness of fit when choosing “best” model
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Intuitive Likelihood for Model Selection

• Data are represented by small black discs.
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Is Red or Blue Model the likely source of the 4 data points ?

2 4 6 8 10 12

0.05

0.10

0.15

0.20

0.25

0.30
f1@xD f2@xD

Likelihood (LH), and Likelihood Function (LHF) 

are both products of probabilities

• For a data set, d = {d1, d2, ... , dn} 

• and a LogNormalPDF = f [ gm, gs | x ]

• The product is LLHH when gm & gs are numbers, 

LH[ d ] = f [ d1 ] * f [ d2 ] * ... * f [ dn ] 

• The product is a LHFLHF when gm & gs are variables

LHF [ gm, gs | d ] = f[gm, gs | d1] * f[gm, gs | d2] * ... * 

f[gm, gs | dn]
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Likelihoods in Practice

• A Likelihood (LH) is the product of the 

probabilities of independent random variables

• Here are 3 probabilities.  Their product equals 

their likelihood.  

prob = {0.2, 0.5, 0.3}

lh = 0.03

• In general, LH tend to be very small numbers 

so that LH << probability
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A Likelihood Function ( LHF ) with Algebra

• LHF = product of the PDF[ di ], for independent data {d1, d2, ... dn}

• The Peak of LHF gives the locus of the MLE parameters

pdf@xD = �

−

Hx−µL2

2 σ2

σ 2 π

, data = 81.1, 2.9, 3.1, 5<

lhf@µ, σD = �

−

H1.1−µL2

2 σ2
−

H2.9−µL2

2 σ2
−

H3.1−µL2

2 σ2
−

H5−µL2

2 σ2

4 σ
4
π
2 =

�

−22.115+12.1 µ−2. µ2

σ
2

4 σ
4
π
2

lhfMAX = 0.0009428 at µMLE = 3.025 and σMLE = 1.381
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The LHF and PDF have same shape, 

but PDF has unit volume

• The LH is the area (volume) of the LHF

• LH > 0, is a positive real number 

• The parent PDF has unit area (volume)

• Thus, PDF =  LHF / LH
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Parameter Estimation using 

Data Likelihood 

• The next slide Illustrates the Calculations for the 
illustrated PDF Prior using dat7.

• Data shown as Vertical Lines  whose lengths are 
the relative probabilities from PDF.

• Model Likelihood is the product of line lengths for 
independent samples.

• Next two slides illustrate LogNormal and Normal 
PDFs with interactive graphics.

• Find Maximum Likelihood by moving sliders to 
adjust { gm and gs } or { m and s }.
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MLE Parameter Estimation: LogNormal PDF
• gmMLE & gsMLE Define the Maximum Likelihood for dat7 when prior = LogNor PDF

• Line heights are proportional to probability for each data value; 

• LH = product of line heights

• Adjust the sliders to see the changes in the line heights with various LogNormal Models

• Note that the initial setting shows parameters for the maximum likelihood
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gm 0.5

gs 1.9

0.5 1.0 1.5 2.0 2.5 3.0

0.5

1.0

1.5
Likelihood = 0.147, FOR 8 gm = 0.5, gs = 1.9 <

Parameter Estimation: Normal PDF
• m

MLE
& s

MLE
Define the Maximum Likelihood for dat7 when prior = Nor PDF

• Adjust the sliders to see the change in line heights and in their product, 
the Likelihood

• Note again that the initial setting shows parameters for the maximum 
likelihood
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m 0.6

s 0.4

-0.5 0.5 1.0 1.5 2.0 2.5

0.2

0.4

0.6

0.8

1.0
Likelihood = 0.0249, FOR 8 m = 0.6, s = 0.4 <
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• Illustration of dat7 LHFs as function of their Parameters

• Moving a parameter away from the peak of the Jt LHF 

decreases the associated LH
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Parameter Estimation with Model Selection 

• Extend to our Earlier Parameter Estimation with dat7 to 
Model Selection

• Consider dat7, a data set with 7 independent values

• dat7 = { 0.224, 0.27, 0.316, 0.333, 0.679, 1.05, 1.35 }

• Use our Computed Likelihoods for both the Normal and a 
LogNormal Models

• Normal Likelihood Function is a function of two 
parameters, m and s

• LogNormal Likelihood Function is a function of two 
parameters, gm and gs

• The model with the larger Maximum Likelihood is a better 
model for dat7
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Model Selection

• Maximum Likelihood ratio for dat7 favors 
– LogNor over Nor  by > 5.8 : 1

• lnLNx = maximum value for LogNormal prior PDF, 

• lhNx = maximum value for Normal prior PDF

0.5 1.0 1.5 2.0 2.5 3.0

0.5

1.0

1.5
lhLNx = 0.147, for 8 gm = 0.5, gs = 1.9 <

-0.5 0.5 1.0 1.5 2.0 2.5

0.2

0.4

0.6

0.8

1.0
lhNx = 0.0249, for 8m = 0.6, s = 0.4 <

lhLNx
lhNx
=

0.147
0.0249
= 5.89
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LHF Ratios replace trial and error 

parameter estimates

Frequentists' use LHFpeak, Bayesians' use LHFvolume.

LHF @ central , width » dt7, dist D LHF Peak LH = LHF Volume Model

I0.263 expI-I10.2 log HgmL+7. log 2 HgmL+6.74 M ë I2 log 2 HgsLMMM ë log 7 HgsL 0.149 0.0834 LogNormal

expI-I7. m2
+3.72 -8.45 mM ë I2 s2 MM ë I 2 8 p

7ê2 s7 M 0.025 0.00378 Normal

Likelihood HPeak L Ratio = 5.95 LNpeak
Npeak

Likelihood HVolL Ratio = 22.1 LNvol
Nvol
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LogNormal Joint PDF = Joint LHF
Joint LH

, and it has unit volume  

With dat7, the PDF is ~ 10x larger than the LHF
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MLE Parameter Estimation for 

Calibration Curve Slope

• The buttons display the left panel, the left & middle panels, or all three panels

• Move the slider to change the slope (left), the errors (middle) and LH (right)

• The initial value, a = 2.59, is its maximum likelihood, 
– It represents the best fit to the data.

Number of Panels Displayed 1 2 3

a = Slope = 2.59
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Probability (p) from PDF

a

b

Limit [ p ] Ø 0 as a Ø b 
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• From dat7 Joint PDF to Probability of specific values for { gm, gs } 

• Maximum Likelihood Parameter Estimates are actually quite UNLIKELY

• Cylinder Volume = Probability that {gm,gs} lie in that defined region of dat7 

– As the radius is reduced, the probability the model parameters are inside the 
cylinder decreases.

– As the sliders move the cylinder around the {gm, gs} plane, the probability 
decreases.

– The initial position indicates the maximum likelihood values for gm and gs.

gm 0.482868

gs 1.93039

rcyl = 0.01 0.03 0.05 0.07 0.09
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Illustration of  the MARGINAL INTEGRAL

Probability of gm given dat19, by averaging over gs from the Jt PDF

dw = half of slice width
0.0025 0.005 0.0075 0.01

gmw = Nominal Value of gm

Shaded Volume = P@ 0.195 < gm < 0.205 » dat19, LogNor D = 0.0808
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Lognormal PDF is a parametric function of gm and gs

Each pair, {gm, gs}, represents a unique LogNormal PDF.
Probability of non-compliance (or “fail”) increases moving away from the origin

x = Conc
OEL

, Green for x < 0.8, Yellow for 0.8 < x < 1.2, Red for 1.2 < x

gs=3.6 pfail = 0.0262 pfail =0.247 pfail = 0.428 pfail =0.458 pfail = 0.639

gs=2.7 pfail =0.00618 pfail =0.189 pfail = 0.407 pfail =0.447 pfail = 0.678

gs=1.8 pfail = 0.0000118 pfail =0.0682 pfail = 0.346 pfail = 0.41 pfail = 0.783

gs=1.1 pfail = 3.81¥10-150 pfail =2.05¥10-20 pfail =0.00712 pfail =0.0806 pfail = 1.

gm=0.1 gm=0.5 gm=0.95 gm=1.05 gm=1.9
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Regions in the {gm, gs} plane, 

colored for Compliance
• NIOSH in 1977 suggested 95% confidence as a goal for compliance decisions.

• Let X95 = the 95th percentile of the LogNormalDistribution[ gm, gs ] 

• X95 = gm gs1.64485

• The contours for x95 = {0.01, 0.1, 0.5, 1} and gs > 4.055  are now easily plotted.

• Avoid Environments with gs > 4.055   .OR.   x95 > OEL   
– They represent dangerous uncontrolled exposures
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Overlay contour Plot for dat19PDF onto 

AIHA BDA Regions
• The volume of the Jt PDF over the gm, gs plane in each region is the probability

• Each point, {gm, gs} represents one possible model for the exposures

• Each such discrete model has p = 0

• Probabilities are computed for regions of the {gm, gs} plane
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Decision Regions On PDF

PDF
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Illustration of Volume (P) over Region 3 using the dat19PDF

This is another type of Probability Integral, 

It sums over the portion of the PDF that is of interest.

PDF
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BDA Bar Chart for dat19, which has 2 values > OEL; 

• {gm, gs}
PEAK

= {0.196, 2.60}, but P[x > X
95 

| dat19, LN] = 0.676

• No need for p-value, ANOVA, F-test, etc. etc. ... etc.

• Bar height = probability for Regions 0 thru 5 

– Given dat19 & LogNormal model
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Summary

• Probability Theory is useful for both Deduction 
(FREQUENTIST) and Inference (BAYESIAN)

• Bayes Rule enables Inference using both prior and new data

• Likelihood (LH) is product of probabilities

• Likelihood function (LHF) is product of  probabilities w 
unknown parameters

• LH = area (volume) of LHF and PDF = LHF/LH

• BDA defines regions in terms of compliance goals

• Probability that data are in a region = Area (volume) of that 
region of PDF 

• BDA is a useful communications tool
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Further Reading
• Information Processing:  Boolean Algebra, Classical Logic, Cellular Automata, and 

Probability Manipulation. by David J. Blower

• The Theory That Would Not Die: How Bayes’ Rule Cracked the Enigma Code, 
Hunted Down Russian Submarines, and Emerged Triumphant from Two Centuries 
of Controversy. by Sharon Bertsch McGrayne

• Probability Theory - The Logic of Science. by Edwin T. Jaynes

• Data Analysis - A Bayesian tutorial. by D. S. Sivia with J. Skilling

• Paul Hewett, Perry Logan, John Mulhausen, Gurumurthy Ramachandran, and 
Sudipto Banerjee.  “Rating Exposure Control Using Bayesian Decision Analysis.”  
Journal of Occupational and Environmental Hygiene, (2006)   3 : 568–581
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