

a joint venture

Daniel Hernandez MPH, CIH

Discussion Points

- Quick Overview with Exposure Data Summary
- Project Setting with Sensitive Areas to the North
- Evaluation of Embankment Production/Mitigation
 - Methods and Assumptions
 - Exceedance Criteria: Schedule and Cost Implications
 - Results

Calaveras Reservoir

Calaveras Fault

Replacement Dam

Asbestos Speciation

Foliated Blueschist

Scanning Electron Micrograph of Blueschist

Scanning Electron Micrograph Blueschist

abCor 8.0 KV EM Mag 1500X

10µm

Zone 5 Embankment Operations

Left Abutment and Spillway Keys

Work Place Monitoring

Over 2,000 samples collected as of May 2014. Of which, 1294 were breathing zone samples, 187 were overloaded.

- Sampling by job category, operation, and geologic unit
- Differences in exposures between amphibole and serpentine groups

	Serpentine Group (Chrysotile)	Amphibole Group (Blueschist)
Total PCM Samples	700	407
AdjPCM (NIOSH 7402)	366	315
Min (7402)	0.0005 (f/cc)	0.0006 (f/cc)
Max (7402)	0.5898 (f/cc)	1.813 (f/cc)
Median (7402)	0.0184 (f/cc)	0.0496 (f/cc)
Geometric Mean(7402)	0.0172 (f/cc)	0.0529 (f/cc)

NIOSH 7402 Adjusted PCM Results

[* Highest 15 results (>1 f/cc) removed for Visual Purposes]

Other Franciscan (Chrysotile) n= 366 samples

Production Embankment Operations

- Summer Months 2013
 - First "Real" Look at Zone 5 Production
 - Exceedance Day Requirements
 - Trigger Concentrations

- Vary from 0.0015 s/cc to 0.0068 s/cc

Regional Setting Perimeter Monitoring

Project Setting (HR to the North)

Decision to Evaluate Alternative Technology

Existing Controls

Controls under Evaluation

Alternative Technology Issue

Approach for Developing Quantitative Relationships

- Three Step Process
 - Develop Production Emission Factors
 - Evaluate/establish relationship of Operational Emissions to Trigger Criteria,
 - Calibrate if Possible

Emission Factors

- Site Specific and Operation Specific Measurements
 - Concentrations at Distance
 - Wind speed / Direction
 - Atmospheric Stability Class
 - Collect other information: dump duration, number of dumps, time of generating activities, etc.
- Calculate Emission Factors
 - Use of SCREEN3 for Dispersion Constants

Measurements

Air and wind speed measurements are taken downwind at several distances downwind (sample array) from operations of interest.

Dozens of operations/equipment isolated to develop emissions information

Example Operations

Operation (s)

Blasting

Drilling

Loading

Rock Breaking / Sorting

Slope Shaping

Loadout (multiple tools)

Evaluating Zone 5 Operations

Adding Emitting Components

Assumptions: 7000 yards per day, 28 yards per load, 250 loads per 10 –hour day.

•Stilling Basin – hoe-ram, dozer, excavator loading trucks

• Dumping at the Dam Base

•Dozing and Compacting at the Dam

Activity	Emission Factors (structures/sec)
Stilling Basin: Hoe Ram and Excavator Dozer – pushes material to excavator Load Trucks (averaged over 10 hrs)	2.4E +09 5.5 E +09 2.0 E +08
Dam: Dumping (average over 10 hours) Dozing and Compaction	2.0 E +08 5.5 E +09
Total Emissions	1.4 E + 10

Zone 5 Evaluation

2. Direct Measurement

Range of Emission Estimates:

3.1 x 10E+08 s/sec to 3.1 x 10E+10 s/sec Average = 7.6 x 10E+09 (12 trials)

Zone 5 Evaluation

3. Indirect Measurement (Exposure Monitoring)

Consider

- a. 1 f/cc = 1E+06/m3
- b. 50 m wide by 10m high

1 meter slice of that air = 500 million fibers

or 5,000 million structures (5E+09 structures)

Modeling Emissions

Complex Terrain Model:

-Elevation Data -Site Specific Meteorology

- -Upper Air Profile
- -Surface Characteristics

Source:

- -Variable Source
- -Measured Emission Rates

Receptor Array North Measurement Point

Output-Daily 24 hour average conc.

Model's Interpretation of Digital Elevation Data

Z5 Production

Largest Emitter Volume Source

Dozers:

-Front Facing Fan blowing out towards the blade

-Exhaust Stacks

Excavators:

-Cooling Fans directed inside of the machinery

-Exhaust Stacks

Obstacles in the Field Therefore Considerable Mixing as Wind Washes through the Operation

Compare

Modeled versus Measured Z5 Operations

Note: P-4 Experience 15 overloads over the 3 month Period

Three Month 24 hr. Average June 1, 2013 to Aug 31, 2013

(S/m3)	HR-N	P-4*	P-5	P-11	Avg. P4 & P11
Modeled	1,124	26,122	7,034	13,033	19,578
Measured	1,260	8500	5,140	20,080	14,290

Three Month 24 hr. Average June 1, 2013 to Aug 31, 2013

(Modeled Values Substituted for P-4 Overloads which are blank cells)

(S/m3)	HR-N	P-4	P-5	P-11	Avg. P4 & P11
Modeled	1,124	26,122	7,034	13,033	19,578
Measured	1,260	15,213	5,140	20,080	17,647

Now Look at Concentrations vs. Distance

All Points Modeled

P-Stations and HR are Measurement Points

Modeling the Stilling Basin Z5 Load Out Summer 2013 (June – August)

Focus on the Properties (Note the Rate of Change)

Concentration Decay with Distance is a <u>Function</u> of:

- Meteorology over the Period
- Terrain over the Distance
- Source Release Characteristics
 - Location
 - Elevation
 - Lateral and Vertical Dimensions

Its Most Useful Property:

- Shape of the Decay is Independent of Release Rate, and,
- Concentration at a discrete point is Linearly Related to the Source Emission Rate

Plot the Ln Concentration versus Distance

Summer			
Station	Dist1	InConc1	
P4/11		0	9.882136
Р5	5	12	8.859789
a34	9	62	7.953318
a33	11	57	7.779467
a32	14	12	7.56372
a31	16	57	7.309212
HR-N	21	28	7.024649

Line of Best Fit:

Ln Conc. = 9.556 - 1.353E-03*DistanceR2 = 0.938

Note :

The slope of this line is the average concentration decay rate over the distance.

We call that the average Decay Constant (-0.001353) for the Summer Period

Use Exponential Decay Model to Estimate Critical Concentrations

Exponential Decay:

$$\frac{N_c}{N_p} = e^{-\gamma * Dist}$$

Where Nc is the "risk-based" concentration at HR, and Np is the project perimeter concentration (critical concentration) protective of the receptor at some distance downwind. Gamma is the average Decay Constant.

$$\frac{1500}{Np} = e^{-0.001353(2128)}$$

Solving for No: 26,700 s/m3 or 0.027s/cc

Note: Over the modeling period, south wind 79.5% of the time.

Critical Perimeter Concentrations

Repeat the Process for Spring, Fall, Winter

Average Period 24-hour Critical Concentrations- below which are protective of some hypothetical receptor (HR) 2128 meters to the north

Season	R ² Corr.	Average Decay (K)	Distance To HR (M)	Period Average Critical Perimeter Concentration to Exceed HR TML (s/cc)
Spring	0.903	-0.00081	2128	0.008354
Summer	0.938	-0.00135	2128	0.0267
Fall	0.943	-0.00044	2128	0.003842
Winter	0.834	-0.00036	2128	0.003216
Average				0.011 s/cc

Scrubbing Efficiency

Recall (From Decay):

The concentration at a point distant from the source is linearly related to the emission rate of the source

Therefore Dust Controls need to remove 60% to 70% above and beyond current method.

Average P4/P11	Modeled Conc. (s/m3)	Required Concentration (s/m3)	% Reduction Required
Min	359		
Max	331,159		
Median	24,815	10,500	58%
Average	33,559	10,500	69%

Frequency Distribution of Modeled HR 24- hour Average Concentrations Over 2013 (312 Operational Days – Sundays Excluded)

Cumulative Probability Function

One year Zone 5 Simulation

Sensitive Receptor Location

Likelihood of Success

Current Risk-Based Concentration with Current Controls

Assumes:

Four Year Exposure Duration

Residential Exposure Scenario Exposure Onset - Birth

All Receptors - Likelihood of Success:

Resident	0.0013 s/cm3	37%
Worker	0.018 s/cm3	84%
Cyclist	0.608 s/cm3	100%
Hiker	1 s/cm3	100%

Likelihood of Success

Future Risk-Based Concentrations With Current Controls

Assumes:

Six Year Duration

All Receptors Considered-Likelihood of Success:

Resident	0.0009 s/cm3	29%
Worker	0.0125 s/cm3	78%
Cyclist	0.429 s/cm3	100%
Hiker	0.720 s/cm3	100%

Likelihood of Success

Risk-Based Concentrations and New Controls Reduce Emissions by 25%

Assumes:

Six Year Duration

All Receptors Considered- Likelihood of Success:

Resident	0.0009 s/cm3	35%
Worker	0.0125 s/cm3	83 %

Alternative Strategies

- Do Nothing
 - Shutdowns (50 forecast)
 - Longer Project Driving RBCs Lower
- Import 600K yds (60,000 trucks)
 - EIR Process
 - Elevated Accident Risks (Roadway Shutdowns?)
- Re-Evaluate Risk Based Triggers (Alternative Receptors)
 - Move Residents (*)
- Combinations
 - Suspect some Import for mitigation plus RBCs

Thanks for Listening